21 September 2023

[Thin-Films] – New p-type near-infrared transparent conducting thin films developed with better performance

Home > News > [Thin-Films] – New p-type near-infrared transparent conducting thin films developed with better performance
Flèche contenu
[Thin-Films] - Codex International

A group of scientists at the Hefei Institutes of Physical Sciences of the Chinese Academy of Sciences has developed new p-type (positive hole) near infrared (NIR) transparent conducting (TC) films with ultra-high conductivity, unveiling a new transparent conducting material (Advanced Optical Materials, “p-Type Near-Infrared Transparent Delafossite Thin Films with Ultrahigh Conductivity”).”They have extraordinary properties,” WEI Renhuai, a physicist who led the team, “the NIR optical transmittance of the films can reach as high as 85~60%, while maintaining the film resistance at room temperature at a low level.”
In recent years, p-type TC has attracted extensive attention. Although n-type (negative electron) TC is common in current market, the incorporation of p-type TC and n-type TC can achieve invisible active circuit heterostructure.
Compared with traditional delafossite-based P-type TC, the room-temperature conductivity of this novel TC is much higher. In addition, the films also exhibit high near-infrared transmittance with a low room-temperature sheet resistance.

[Thin-Films] - Codex International

In the experiment, based on the first-principles calculations, the scientists found that CuRhO2 showed p-type conducting characteristics and processed a narrow indirect bandgap of 2.31 eV.
Meanwhile, the optical absorption in the NIR and visible range is much low. The larger Rh3+ ionic radius makes the CuRhO2 accept hole-type carriers with high concentration.
The great advance in p-type NIR TC CuRhO2 thin films, based on both theoretical calculations and experimental results, will significantly improve the development of future multifunctional invisible optoelectronic devices.

Discover Also
[Materials] – High-entropy alloy nanoparticles show excellent resistance to oxidation 1 November 2020

High-entropy alloys (HEAs), which are formed by combining nearly equal parts of several – usually five or more – primary metals, are an emerging class of advanced materials that hold great potential for creating materials with superior mechanical, thermal, and catalytic properties.

Read more
[Nanotechnology]- Estimating the occurrence of nanomaterials in the environment 12 September 2023

To perform a risk assessment of nanomaterials in the environment, information on the exposure, i.e. the amounts that are present in the environment, is essential. In contrast to many other known pollutants, the concentrations of nanomaterials in environmental systems cannot be measured directly. In this situation, exposure modelling is a solution to estimate the environmental exposure with synthetic nanomaterials.

Read more