As the electric vehicle (EV) industry is advancing, so are the efforts in the research and development of superior lithium (Li)-ion batteries to power these vehicles. Exploring and expanding rapid charge-discharge technology and extended battery life are critical challenges in their development. A few factors, such as the diffusion of Li ions, characteristics of the electrode-electrolyte interface, and electrode porosity, can help overcome these issues achieve extreme fast charging and ultralong life.
Lire la suiteA Ludwig Cancer Research study has developed a novel nanotechnology that triggers potent therapeutic anti-tumor immune responses and demonstrated its efficacy in mouse models of multiple cancers. Led by Co-director Ralph Weichselbaum, investigator Wenbin Lin and postdoctoral researcher Kaiting Yang at the Ludwig Center at Chicago, the study describes the synthesis, mechanism of action and preclinical assessment of the nanoparticle, which is loaded with a drug that activates a protein central to the efficient induction of anti-cancer immunity.
Lire la suiteA team of researchers has discovered a new mechanism to stabilize the lithium metal electrode and electrolyte in lithium metal batteries. This new mechanism, which does not depend on the traditional kinetic approach, has potential to greatly enhance the energy density — the amount of energy stored relative to the weight or volume — of batteries.
Lire la suiteThe bar was undoubtedly set high: In the research project Functional Oxides Printed on Polymers and Paper – FOXIP for short – the goal was to succeed in printing thin-film transistors on paper substrates or PET films. Electronic circuits with such elements play an important role in the growing Internet of Things (IoT), for example as sensors on documents, bottles, packaging … – a global market worth billions.
Lire la suiteResearchers from the University of Rostock and Technion Haifa have created the first three-dimensional topological insulator for light. A judiciously placed screw dislocation allows optical signals to wind around the surface of a synthetic lattice while keeping it protected from scattering.
Their discovery has recently been published in the journal Nature (« Photonic topological insulator induced by a dislocation in three dimensions »).
In a newly-published study (Small, « A Universal Pick-and-Place Assembly for Nanowires »), a team of researchers in Oxford University’s Department of Materials led by Harish Bhaskaran, Professor of Applied Nanomaterials, describe a breakthrough approach to pick up single nanowires from the growth substrate and place them on virtually any platform with sub-micron accuracy.
Lire la suiteWhile efficiency is a primary concern for solar cells, researchers have also focused on developing solar cells that are lightweight, low-cost, and flexible. However, the fabrication process itself has posed a serious environmental concern: the use of toxic materials and generation of industrial waste.
Lire la suiteThe rapid development of ultra-thin electronic skins (e-skins) – also called epidermal electronics or electronic tattoos – is opening new realms of possibility for flexible and stretchable monitoring gadgets that are wearable directly on the skin. These e-skin devices can be used for, among other things, prosthetics and rehabilitation, optogenetics, human-machine interfaces, human-computer interaction in gaming, and as diagnostic tools in the medical field (read more on this topic in « Lab-on-skin: Nanotechnology electronics for wearable health monitoring »).
Lire la suite