5 September 2023

[Thin-Films] – Researchers test quantum theory with precision-engineered thin films

Home > News > [Thin-Films] – Researchers test quantum theory with precision-engineered thin films
FlĂšche contenu
[Thin-Films] - Codex International

Comparing experimental results and theoretical calculations can be difficult for quantum materials. These are materials that have special properties, such as superconductivity, that can only be understood using the rules of quantum mechanics. One way that scientists compare experiments and computations is to use sample materials that isolate and emphasize an atomic line with one dimensional (1D) properties.
In this study (Science, “Anomalously strong near-neighbor attraction in doped 1D cuprate chains”), scientists grew thin films of layered copper-oxygen (cuprate) materials to isolate 1D copper chains. This allowed them to test theories of how electrons interact in quantum materials. They grew the films under conditions that allowed them to carefully modify the films’ chemistry and electronic structure. They then measured the electronic structure.
The research was possible in part because of a specialized synchrotron X-ray beam line designed and built for this purpose.Describing how the properties of quantum materials interact and testing related theories are mathematically very complex and time consuming. This work enabled a direct comparison of computational results against experimental measurements.
The study indicates that standard theory is not sufficient and requires a new term to fit the experimental data. The work will help scientists refine theories that are essential to describing and engineering new quantum materials and effects. This could eventually lead to new quantum electronic devices.
It is currently impossible to computationally solve the electronic structure of multi-dimensional quantum materials. 1D theory is computationally possible but difficult to test because most materials have 3D structures. The structure of inherently layered 2D cuprate materials can be rearranged, when synthesized in the ultra-thin limit, resulting in 1D copper-oxygen chains that run parallel to the material surface.
However, to fully test theories of electron interactions and transport, researchers also need well characterized “doping” defects in the cuprate oxygen stoichiometry.
In this research, scientists figured out a synthesis method, using ozone during molecular beam epitaxial growth, to add extra oxygen atoms that grab electrons from the copper atoms and create holes in the electronic structure. This was done at a thin film deposition station connected to a synchrotron X-ray beamline that was designed with a sensitive X-ray photoemission spectroscopy capability that can map out the resulting electronic structure.
By comparing experimental results with theory, the researchers showed that the standard theory of electron interactions and transport could not predict the 1D doping effects without a modification used to show an unusually strong attraction between certain electrons at longer separations. This attraction is mediated by atomic vibrations.
Understanding the coupling between chemistry, defects, vibrations, and the spin direction of electrons are a necessary part of engineering quantum materials for future devices. This work provides a needed direct connection between theory and experiment at the level of correlated electron theory.

Discover Also
[Nano-Medecine] – Plant-based relatives of cholesterol boosts nanoparticle gene therapy 21 February 2020

Gene-infused nanoparticles used for combating disease work better when they include plant-based relatives of cholesterol because their shape and structure help the genes get where they need to be inside cells.

Read more
[Perovskites] – Perfecting perovskites – new gas-quench method yields more stable solar cells 24 January 2024

The new method of making mixed halide-perovskites results in solar cells with improved stability and performance. The new method results in better control over perovskite crystallization rates. This means the crystal structure is more ordered, in part due to researchers understanding and taking advantage of the faster crystallization of bromide relative to iodide.
The result is a material with fewer defects and less halide migration and thus less segregation of the bromide and iodide. This in turn means uniform mixing of bromide and iodide across the material, which allows the material to absorb light evenly. The end result is that solar cells made using the new method will perform better under real-world conditions.
Typical halide perovskite solution deposition uses an anti-solvent drip procedure to initiate crystallization of the halide film. The standard anti-solvent method for producing bromide-iodide mixed halide perovskite films often leads to excessive defect formation (e.g., bromide vacancies) owing to the rapid crystallization of bromide vs. iodide-perovskite phases. Simulations show that halide migration is enhanced in the presence of a large population of halide vacancies. This limits the stability of bromide-iodide mixed halide perovskites under light and heat.
In comparison to the anti-solvent approach, the gentler gas-quench method better controls crystallization, first producing a bromide-rich surface layer that then induces top-down columnar growth to form a gradient structure with less bromide in the bulk than in the surface region. The anti-solvent method does not produce such a gradient structure.
In this study, researchers from the National Renewable Energy Laboratory, the University of Toledo, and the University of Colorado Boulder demonstrated that the gas-quench method also produces fewer bromide vacancies and results in materials with a higher quality opto-electronic performance. Solar cells made using the gas-quench method retain desirable light absorption properties and provide enhanced performance in the form of a higher charge carrier mobility, higher open circuit voltage, and enhanced stability.

Read more