• AI Chatbot News

23 février 2020

[Photovoltaic] – If you want to catch more light, twist it

Accueil > Actualités > [Photovoltaic] – If you want to catch more light, twist it
Flèche contenu
Tantalum arsenide absorbs light - Codex International

A special class of materials known as “Weyl semimetals” have unusual physical properties. In these materials, researchers can separate electrons by their “handedness.” That’s whether the electrons’ magnetic moment is in the same direction as the electrons’ movement or the opposite direction.
This results in a host of unique phenomena that researchers can use to turn infrared light into electricity and develop very fast electronic circuits.
In this research (Nature Materials, “Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal”), scientists created devices based on one Weyl semimetal, tantalum arsenide. They observed that this material was able to convert more light to electricity than any other material. The conversion was 10 times higher than previous measurements with other materials.
The bulk photovoltaic effect is a way to convert light into electrical current. Scientists may be able to use this effect to increase efficiency and reduce costs compared to conventional approaches to solar cells.
In this research, scientists developed microscopic devices based on the Weyl semimetal tantalum arsenide. In most materials, the bulk photovoltaic effect is small.
However, the unique properties of Weyl semimetals led to the material demonstrating a much larger bulk photovoltaic effect than scientists have seen before. In addition, the photovoltaic devices they developed absorb mid-infrared light. This is an important wavelength for devices that conduct chemical and thermal imaging as well as waste heat recovery.
Scientists have observed a remarkably large mid-infrared bulk photovoltaic effect (BPVE) in microscopic devices made from the Weyl semimetal tantalum arsenide (TaAs). This discovery results from combining recent developments in Weyl semimetals, focused-ion beam fabrication, and theory, which suggested a connection between BPVE and topology.
First, the high efficiency of the nonlinear photovoltaic process comes from a unique property of Weyl semimetals where electrons can be separated by their chirality (“handedness”).
Second, previous research had shown that the photovoltaic response of these materials can be dominated by thermal effects.
In this study, scientists used a focused ion beam to fabricate a micrometer-scale slice of a TaAs crystal into an ideal shape for photovoltaic measurements. Then, combining a symmetry analysis with this device geometry enabled researchers to separate the shift current (photovoltaic effect) from photothermal effects.
The observed magnitude and wavelength range of the shift current advances our fundamental understanding of the effects of topology in materials. It also demonstrates the utility of Weyl semimetals for broad range of practical applications.
Source: Boston College

Découvrir
[Graphene] – Growing large-area single-grain graphene layers 16 février 2021

In the background material to his Nobel Prize talk in 2010, Prof. Geim illustrated the strength of graphene with his now famous cat hammock example : The unit hexagonal cell of graphene contains two carbon atoms and has an area of 0.052 nm2. That translates into a density of 0.77 mg/m2. A hypothetical hammock measuring one square meter made from graphene would thus weigh 0.77 mg.

Lire la suite
[E-Beam] – E-Beam atomic-scale 3D ‘sculpting’ could enable new quantum nanodevices 15 septembre 2020

By varying the energy and dose of tightly-focused electron beams, researchers have demonstrated the ability to both etch away and deposit high-resolution nanoscale patterns on two-dimensional layers of graphene oxide.

Lire la suite