![[Thin-Films] - Codex International](https://codex-international.com/wp-content/uploads/2023/09/id59570_1.jpg)
A group of scientists at the Hefei Institutes of Physical Sciences of the Chinese Academy of Sciences has developed new p-type (positive hole) near infrared (NIR) transparent conducting (TC) films with ultra-high conductivity, unveiling a new transparent conducting material (Advanced Optical Materials, “p-Type Near-Infrared Transparent Delafossite Thin Films with Ultrahigh Conductivity”).”They have extraordinary properties,” WEI Renhuai, a physicist who led the team, “the NIR optical transmittance of the films can reach as high as 85~60%, while maintaining the film resistance at room temperature at a low level.”
In recent years, p-type TC has attracted extensive attention. Although n-type (negative electron) TC is common in current market, the incorporation of p-type TC and n-type TC can achieve invisible active circuit heterostructure.
Compared with traditional delafossite-based P-type TC, the room-temperature conductivity of this novel TC is much higher. In addition, the films also exhibit high near-infrared transmittance with a low room-temperature sheet resistance.
![[Thin-Films] - Codex International](https://codex-international.com/wp-content/uploads/2023/09/id59570_2.jpg)
In the experiment, based on the first-principles calculations, the scientists found that CuRhO2 showed p-type conducting characteristics and processed a narrow indirect bandgap of 2.31 eV.
Meanwhile, the optical absorption in the NIR and visible range is much low. The larger Rh3+ ionic radius makes the CuRhO2 accept hole-type carriers with high concentration.
The great advance in p-type NIR TC CuRhO2 thin films, based on both theoretical calculations and experimental results, will significantly improve the development of future multifunctional invisible optoelectronic devices.
Researchers described a new strategy of designing metamolecules that incorporates two independently controllable subwavelength meta-atoms. This two-parametric control of the metamolecule secures the complete control of both amplitude and the phase of light.
Read moreHigh-entropy alloys (HEAs), which are formed by combining nearly equal parts of several – usually five or more – primary metals, are an emerging class of advanced materials that hold great potential for creating materials with superior mechanical, thermal, and catalytic properties.
Read more