Actualités

Accueil / Actualités
Flèche contenu
[Epitaxy] – Growing Highly Ordered Epitaxial Nitrides – Possible Future Applications 3 novembre 2020

Among the promising developments of nanotechnology in recent years, has been the development of the so-called bottom-up manufacturing of nanomaterials. This is the process by which materials at tiny scales and properties on the nanoscale (between 1 nm and 100 nm, or one and one hundred billionths of a meter) are manufactured through chemical growth from a material – known as epitaxy.

Lire la suite
[Graphene] – Graphene and the Most Popular Advanced Alloys 3 novembre 2020

Graphene is an extraordinary material, the only basic member of a family of 2D carbon materials. With its unique mechanical and physical properties, it is a superb filler at the nanoscale, in metal matrix composite materials. It can easily disperse into the matrix and is cheaper than its closest competitor, carbon nanotubes, which enhance strength and function. The increased surface-to-volume ratio of graphene also means that its properties are better reflected in the composite.

Lire la suite
[Polymers] – How are Conjugated Microporous Polymers Used in Solar Fuel Production? 3 novembre 2020

Conjugated microporous polymers, CMPs, are a sub-class of porous materials linked to structures such as zeolites, metal-organic frameworks and covalent organic frameworks. They are a unique material, combining extended π-conjugation with a permanently microporous skeleton; they are amorphous rather than crystalline and possess conductivity, mechanical rigidity and insolubility.

Lire la suite
[Supra] – Room Temperature Superconductors: The Future Shift in Energy Transmission 3 novembre 2020

Superconductivity at room temperature is still an unsolved challenge in science. A superconductor with the capability of operating at ambient temperatures might have the capacity to reduce the energy dissipation by almost 5% during electricity transmission. This would bring a paradigm shift in large-scale energy transmission and energy usage in small-scale computing systems, while it may also work as a reservoir for energy storage. Room-temperature superconductors have the potential to revolutionize the energy industry.

Lire la suite
[3D Printing] – The First 3D-Printed Metal Aircraft Engine Component and What it Means for the Defense Industry 3 novembre 2020

Recent space projects such as NASA’s plan to create a permanent moon base and SpaceX’s method of reaching planet Mars has led to a new burst of technological innovation across the aerospace industry. Such developments are seen in the field of component manufacturing, where 3D printing has allowed for flexibility during the design process.

Lire la suite
[UHV] – Sample Transfer in UHV Applications 3 novembre 2020

Certain areas of scientific research require atomically clean surfaces and low rates of contamination. In these instances, the ultra-high vacuum (UHV) environments are essential.

Lire la suite
[Thin Films] – Explaining the Deposition Technique for Thin Films 3 novembre 2020

With the advancing of material science, nowadays the thin film deposition technology is developing quickly and has a crucial role in our everyday lives. Thin film deposition is the act of applying a thin film on the surface of another material. It is used in the manufacturing of devices such as computers and thin film transistors. It also finds applications in the production of semiconductors as well as in simple everyday objects as a typical household mirror.

Lire la suite
[CVD] – Controlling the Orientation, Edge Geometry and Thickness of CVD Graphene 3 novembre 2020

Creating defect-free sheets of Graphene is said to be one of the main ‘hurdles’ in the search for wide scale commercialization of the material… but why is it so important to form large defect free sheets?
Graphene has received an astonishing amount of interest these past few years, so much so that now it is commonly referred to as the miracle material that’s predicted to revolutionize the 21st century.

Lire la suite
[Polymers] – Ultrasound-induced polymers 2 novembre 2020

Researchers from Virginia Tech’s Future Materials Laboratory and MInDS Laboratory have recently demonstrated that high-intensity focused ultrasound (HIFU) is a promising, non-invasive stimulus with multiple superior and unique capabilities to induce localized heating and achieve temporal and spatial thermal effects in polymers.

Lire la suite