• FinTech
  • Forex Trading
  • Sober living

21 septembre 2023

[Thin-Films] – New p-type near-infrared transparent conducting thin films developed with better performance

Accueil > Actualités > [Thin-Films] – New p-type near-infrared transparent conducting thin films developed with better performance
Flèche contenu
[Thin-Films] - Codex International

A group of scientists at the Hefei Institutes of Physical Sciences of the Chinese Academy of Sciences has developed new p-type (positive hole) near infrared (NIR) transparent conducting (TC) films with ultra-high conductivity, unveiling a new transparent conducting material (Advanced Optical Materials, « p-Type Near-Infrared Transparent Delafossite Thin Films with Ultrahigh Conductivity »). »They have extraordinary properties, » WEI Renhuai, a physicist who led the team, « the NIR optical transmittance of the films can reach as high as 85~60%, while maintaining the film resistance at room temperature at a low level. »
In recent years, p-type TC has attracted extensive attention. Although n-type (negative electron) TC is common in current market, the incorporation of p-type TC and n-type TC can achieve invisible active circuit heterostructure.
Compared with traditional delafossite-based P-type TC, the room-temperature conductivity of this novel TC is much higher. In addition, the films also exhibit high near-infrared transmittance with a low room-temperature sheet resistance.

[Thin-Films] - Codex International

In the experiment, based on the first-principles calculations, the scientists found that CuRhO2 showed p-type conducting characteristics and processed a narrow indirect bandgap of 2.31 eV.
Meanwhile, the optical absorption in the NIR and visible range is much low. The larger Rh3+ ionic radius makes the CuRhO2 accept hole-type carriers with high concentration.
The great advance in p-type NIR TC CuRhO2 thin films, based on both theoretical calculations and experimental results, will significantly improve the development of future multifunctional invisible optoelectronic devices.

Découvrir
[Thin-Films] – A bio-inspired vision sensor based on InP quantum dots/oxide thin-film phototransistors 20 novembre 2023

A research team led by Prof. CAO Hongtao at the Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences, in cooperation with Prof…

Lire la suite
[Nano-Sensors] – Highly sensitive sensors show promise in enhancing human touch 21 février 2020

People rely on a highly tuned sense of touch to manipulate objects, but injuries to the skin and the simple act of wearing gloves can impair this ability.

Lire la suite