10 août 2019

[Thin Films] – Magnetic Thin Films and Nanostructures: Patterning New Properties

Accueil / Actualités / [Thin Films] – Magnetic Thin Films and Nanostructures: Patterning New Properties
Flèche contenu
Array magnetic dots - Codex International

Exceptional advances in the control of material properties has been achieved, through careful manipulation of geometry on nano- and sub-nanometre length scales, in magnetoelectronics and nanomagnetism. Advanced techniques now allow for the creation of structures patterned on sub-micron length scales in three dimensions. New phenomena has been discovered in patterned magnets that can be strongly controlled by ion bombardment, multilayering, and lithographic patterning.
Examples include: materials for microwave signal processing technologies, whose properties that can be tuned by magnetic and electric fields; high speed switching of magnetization in elements used for data storage and spin electronics; and manipulation of magnetic domains and domain walls in carefully crafted structures that serve as model experimental systems for studies of complex dynamics.
Perhaps the most famous example of how geometry can control fundamental material properties is Bragg scattering of electrons in crystals. Most recently an analogy has been created for microwave excitations in two dimensional magnetic arrays, known as ‘magnonic crystals’. These excitations can be diffracted by magnetic features with appropriate dimensions.
An array of magnetic wires was constructed from a 30 nm thick Ni80Fe20 film using deep ultraviolet lithography and lift-off, forming a diffraction array for magnetostatic spinwaves. The magnetic wires were 350 nm wide and spaced 55 nm apart A stop band was observed for propagation perpendicular to the stripe axes, demonstrating the possibility of engineering a magnonic band structure.

Labyrinth array Co film - Codex International
Découvrez aussi
[Spintronics] – Topological materials outperform through quantum periodic motion 21 février 2020

Scientists at the U.S. Department of Energy’s Ames Laboratory have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible (npj Quantum Materials, « Light Control of Surface-Bulk Coupling by Terahertz Vibrational Coherence in a Topological Insulator »).

Lire la suite
[Thin Films] – New etching technique will change the way semiconductor devices are made 22 février 2020

Microelectronics like semiconductor devices are at the heart of the technologies we use each day. As we move into an era where we are stretching the limits of Moore’s Law, it is essential to find new ways to continue to pack more circuitry into each individual device in order to increase the speed and capability of our computers.

Lire la suite