12 novembre 2019

[Thin-Film] – Big improvements in thin-film solar cell efficiency now possible

Accueil / Actualités / [Thin-Film] – Big improvements in thin-film solar cell efficiency now possible
Flèche contenu
CIGS Solar cell- Codex International

Researchers at Penn State and Delaware have developed a theoretical method to improve the efficiency of thin-film solar cells by up to 33 percent.
Flexible thin-film solar cells are needed to supply electrical power to fabrics, clothing, back packs and anywhere that a local autonomous power supply is required.
Rooftop solar based on silicon has made solar energy cheap and readily available. But silicon is rigid and heavy, suitable for large-scale power production but not for portable power. Currently, flexible solar commands around 5 percent of the solar cell market. In order to increase the use of flexible solar it is important to increase the conversion efficiency from its current level of around 21 percent. By tweaking a couple of layers in the solar cell, the researchers believe they can increase efficiency to 27.8 percent.
“Current CIGS cells have a homogenous semiconductor layer,” says Akhlesh Lakhtakia, Evan Pugh University Professor and Charles Godfrey Binder Endowed Professor of Engineering Science and Mechanics, Penn State. “We said, let us go with a nonhomogeneous layer designed to give us the maximum efficiency.”
By varying the semiconductor bandgap on a gradient, they were able to improve the capture of solar energy and increase efficiency by a third. A second tweak involves including a rough reflective layer which helps to slow the recombination of electrons and their holes, again improving efficiency.
In other work, the team has shown that they can increase the efficiency of another type of thin-film cell from 12 percent to 21 percent, an improvement of 80 percent.
“This tells us the opportunity for significant improvement exists,” he says.
Other opportunities have also arisen, including optimizing solar cells for interior lighting and for developing colored solar cells that can be incorporated into designs and clothing.

Découvrez aussi
[Ultra High Vacuum] – The importance of a Sapphire viewport in a HV or UHV 23 février 2020

It is vital for the procedure in-situ to be observed in many high vacuum and ultra-high vacuum (HV/UHV) processes. The challenge is that any optical component must penetrate the hermetically sealed chamber but not compromise the quality of the vacuum.

Lire la suite
[Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research 20 août 2019

As part of their research into optical states of plasmonic-photonic crystals (PPCs), scientists at Kazan Federal University investigated three-dimensional opal-like plasmonic-photonic crystals (OLPPCs), focusing on why OLPPCs do not admit light of certain wavelengths.

Lire la suite