21 février 2020

[Spintronics] – Topological materials outperform through quantum periodic motion

Accueil > Actualités > [Spintronics] – Topological materials outperform through quantum periodic motion
Flèche contenu
dynamic stabilization - Codex International

Scientists at the U.S. Department of Energy’s Ames Laboratory have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible (npj Quantum Materials, « Light Control of Surface-Bulk Coupling by Terahertz Vibrational Coherence in a Topological Insulator »).
Some topological materials are insulators in their bulk form, but possess electron-conducting behavior on their surfaces. While the differences in the behavior of these surface electrons is what makes these materials so promising for technological applications, it also presents a challenge: uncontrolled interactions between surface electrons and the bulk material states can cause electrons to scatter out of order, leading to so-called “topological breakdown”. They are not protected by any “spontaneous” symmetry.
“Topological insulators that can sustain a persistent spin-locked current on their surfaces which does not decay are termed ‘symmetry protected,’ and that state is compelling for multiple revolutionary device concepts in quantum computing and spintronics,” said Jigang Wang, Ames Laboratory physicist and Iowa State University professor. “But the topological breakdown due to surface-bulk coupling is a long standing scientific and engineering problem.”
Wang and his fellow researchers took a paradoxical approach, called dynamic stabilization, by applying a terahertz electric field to drive periodic atomic vibrations, i.e., vibrational coherence, in the model topological insulator bismuth-selenium Bi2Se3. These extra “fluctuations” actually enhanced protected topological states, making the electronic excitations longer lived.
An analogy of such dynamic stabilization is the periodically driven Kapitza pendulum, known by Nobel Laureate Peter Kapitza, where an inverted, yet stable, orientation is achieved by imposing a sufficiently high-frequency vibration of its pivot point. In a similar manner, additional dynamic stabilization can be achieved by driving quantum periodic motions of the lattice.
“We demonstrate the dynamic stabilization in topological matter as a new universal tuning knob, that can be used to reinforce protected quantum transport,” said Wang, who believes the discovery has far-reaching consequences for the use of these materials to many scientific and technological disciplines, such as disorder-tolerant quantum information and communications applications and spin-based, lightwave quantum electronics.
Source: Ames Laboratory

Découvrez aussi
[Thin Films] – New etching technique will change the way semiconductor devices are made 22 février 2020

Microelectronics like semiconductor devices are at the heart of the technologies we use each day. As we move into an era where we are stretching the limits of Moore’s Law, it is essential to find new ways to continue to pack more circuitry into each individual device in order to increase the speed and capability of our computers.

Lire la suite
[Nanotechnology] – Bringing the power of nanotechnology to particle physics. 23 décembre 2021

Particle physicists are on the hunt for light. Not just any light, but a characteristic signal produced by the interaction of certain particles — like ghostly neutrinos, which are neutral fundamental particles with very low mass — with a detector that contains an atomic sea of liquefied noble gases.

Lire la suite