5 janvier 2022

[Silicon] – How to turn ultrathin silicon black ?

Accueil > Actualités > [Silicon] – How to turn ultrathin silicon black ?
Flèche contenu
Silicon - codex-International

Silicon is the basic material that is used in our smart phones, in optical sensors, or in solar cells on our roofs. It is a major outstanding challenge that silicon absorbs incident light only weakly, especially in the red part of the visible spectrum.

Recently, using extensive computations, scientists from the University of Twente in the Netherlands have discovered that a 3D nanostructured back reflector greatly increases the absorption. The back reflector is also made of silicon which is convenient to integrate with ultrathin silicon films. Consequently, next generation devices can be made ultrathin, which allows new devices to be much more flexible and compact.

When incident light is absorbed by a plate semiconducting material like silicon, negatively charged electrons are excited from the lower-energy valence band to the higher-energy conduction band and similar for positively charged holes (that represent the lack of electrons).

By attaching electrodes to the plate, the electrons and holes are harvested and sent into an electric circuit to drive a useful appliance. This process notably occurs inside a solar cell, see Figure 1, where the harvested current serves to power an LED for ambient lighting.

While thick silicon plates are widely used, thin silicon films are enjoying a rising popularity on account of their obvious sustainability, since they require much less material, less resources, and lower cost. Unfortunately, however, thin and ultrathin silicon films hardly absorb light, especially at long wavelengths in the visible spectrum where the sun radiates a lot.

In other words, thin silicon films are not “black”. Therefore the team set out to study how a back reflector could recycle unabsorbed light, and become highly absorbing, or “black”.

As a back reflector, the Twente team studied a diamond-like photonic crystal composed of two sets of perpendicular pores, shown in Figure 1. Such photonic crystals are known to have a record-wide 3D photonic band gap. As a result, the team indeed finds that this crystal is a truly omnidirectional, broadband, and polarization-robust back reflector.

Lead author Devashish effuses: « Our extensive computations reveal that the photonic back reflector yields a striking 9.15 times enhanced absorption even for a 80 nanometer ultrathin film (see Figure 2). Our devices are up to 80% lighter than bulk silicon, due to the porosity of the photonic structure, jokingly referred to as ‘holeyness' ».

Group leader Vos explains: « Such a strong absorption in a thin silicon film (see Figure 3) can also be interpreted in a quantum physical picture, namely that the photonic crystal acts as a colored electromagnetic vacuum below the absorbing film. The absorption of incident light is so strongly boosted that ultrathin silicon would effectively turn black ».

The Twente team also projects that their holey 3D inverse wood­pile structures offer application potential for compact on-chip sensors, photodiodes, and charge-coupled devices (CCD) for cameras (see Figure 4).

 

Découvrez aussi
[Graphene] – From aptamer-graphene interaction understanding to biosensor performance improvements. 4 janvier 2022

The use of graphene-based field-effect transistors in the past decade has been shown as one of the most powerful biosensing units for the detection of numerous biological and biochemical analytes.

Lire la suite
[Nanotechnology] – Using In Situ Liquid TEM to Characterize the Size, Shape and Composition of Nanomaterials 12 novembre 2019

Nanoparticle-based materials are frequently utilized in a variety of applications such as drug delivery, energy production, and catalysis. The shape, composition, and size of nanoparticles has a significant influence on their performance, so producing controllable manufacturing systems is crucial to the commercialization of the latest nanomaterials.

Lire la suite