9 janvier 2019

[Photonics] – Photonic integrated circuits: the future of High-Speed technology?

Accueil / Actualités / [Photonics] – Photonic integrated circuits: the future of High-Speed technology?
Flèche contenu

Integrated circuits are key to modern hardware since its invention by Jack Kilby in 1958. If actual microchips are a set of electronic components on a semiconductor wafer, the same functions can be obtained using light instead of electrons. And benefits of photonic integrated circuits (PICs) are important : higher speed, lower energy loss and a greater bandwidth.

Indium phosphide (InP) is the most mature and high performance PIC platform, and NASA use it for space applications for its reliability. A way of making a PIC with InP is to grow an epitaxial material structure on the InP substrate, for example by MOCVD. In this example, the active region can be made of an InGaAsP multi-quantum well.

(a) Epitaxial structure in the active region; (b) Sideview of the active/passive interface following regrowth Source : Zhao et al. IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 24 , Issue: 6 , Nov.-Dec. 2018 )

(a) Epitaxial structure in the active region; (b) Sideview of the active/passive interface following regrowth
Source : Zhao et al. IEEE Journal of Selected Topics in Quantum Electronics (Volume: 24 , Issue: 6 , Nov.-Dec. 2018)

Découvrez aussi
[Thin Films] – Nano Thin Film Deposition – How Does it Work? 11 août 2019

There are many ways to a deposit a nanosized film, in what are termed ‘bottom-up’ deposition methods. Nanosized films can also be produced by top-down approaches—such as lithography or etching—where larger materials are broken down to create nanosized structures. However, there are limits to how thin top-down approaches can go, so bottom-up methods are required to realize extremely thin films.

Lire la suite
[Glass Technology] – Chemists could make ‘smart glass’ smarter by manipulating it at the nanoscale 26 juin 2019

Chemists have devised a potentially major improvement to both the speed and durability of smart glass by providing a better understanding of how the glass works at the nanoscale.

Lire la suite