20 août 2019

[Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research

Accueil / Actualités / [Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research
Flèche contenu
PCCs - Codex International

As part of their research into optical states of plasmonic-photonic crystals (PPCs), scientists at Kazan Federal University investigated three-dimensional opal-like plasmonic-photonic crystals (OLPPCs), focusing on why OLPPCs do not admit light of certain wavelengths. (This is called the photonic bandgap — it is the range of light wavelengths where propagation through a crystal is difficult).
The primary conditions for passing a light beam with the wavelength of the photonic bandgap and a certain polarization through an OLPPC are the continuity of the gold layer, with a thickness of about 40 nm, and the use of polarized light, said the team.

The researchers modeled light transmission through photonic crystals with a continuous gold layer on their surfaces. They modeled different versions of PPCs and were able to define the conditions of existence of a polarization-sensitive photonic bandgap transmission peak in the OLPPC. They also studied the condition of efficient excitation of the hybrid plasmonic-photonic mode in such structures.

The researchers found that transmittance of light across a PPC was accompanied by excitations of the optical Tamm states. One-dimensional PPCs had light transmission pass bands inside the photonic bandgap in both polarizations, but 3D PPCs did not have light transmission pass bands inside the photonic bandgap, they said, because of a noncontinuous gold layer (shaped like separate nanocaps or nanocrescents on the surface of a PPC). The OLPPCs that were studied had a light transmission pass band inside the photonic bandgap with certain polarization, due to the excitation of the hybrid mode of the optical states.

Découvrez aussi
[Nanotechnologies] – Thorium superconductivity: Scientists discover a new high-temperature superconductor 12 novembre 2019

A group of scientists led by Artem Oganov, Professor at Skoltech and MIPT, and Dr. Ivan Troyan at the Institute of Crystallography of RAS have succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with a very high critical temperature (161 K). The results of their study supported by a Russian Science Foundation (RSF) grant were published in the journal Materials Today.

Lire la suite
Nano-scale process may speed arrival of cheaper hi-tech products 29 novembre 2018

Researchers have developed an inexpensive way to make products incorporating nanoparticles — such as high-performance energy devices or sophisticated diagnostic tests — which could speed the commercial development of devices, materials and technologies.

Lire la suite