20 août 2019

[Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research

Accueil / Actualités / [Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research
Flèche contenu
PCCs - Codex International

As part of their research into optical states of plasmonic-photonic crystals (PPCs), scientists at Kazan Federal University investigated three-dimensional opal-like plasmonic-photonic crystals (OLPPCs), focusing on why OLPPCs do not admit light of certain wavelengths. (This is called the photonic bandgap — it is the range of light wavelengths where propagation through a crystal is difficult).
The primary conditions for passing a light beam with the wavelength of the photonic bandgap and a certain polarization through an OLPPC are the continuity of the gold layer, with a thickness of about 40 nm, and the use of polarized light, said the team.

The researchers modeled light transmission through photonic crystals with a continuous gold layer on their surfaces. They modeled different versions of PPCs and were able to define the conditions of existence of a polarization-sensitive photonic bandgap transmission peak in the OLPPC. They also studied the condition of efficient excitation of the hybrid plasmonic-photonic mode in such structures.

The researchers found that transmittance of light across a PPC was accompanied by excitations of the optical Tamm states. One-dimensional PPCs had light transmission pass bands inside the photonic bandgap in both polarizations, but 3D PPCs did not have light transmission pass bands inside the photonic bandgap, they said, because of a noncontinuous gold layer (shaped like separate nanocaps or nanocrescents on the surface of a PPC). The OLPPCs that were studied had a light transmission pass band inside the photonic bandgap with certain polarization, due to the excitation of the hybrid mode of the optical states.

Découvrez aussi
[Nano-Medecine] – Structurally designed DNA star creates ultra-sensitive test for dengue virus 26 novembre 2019

By folding snippets of DNA into the shape of a five-pointed star using structural DNA nanotechnology, researchers have created a trap that captures Dengue virus as it floats in the bloodstream. Once sprung, the trap – which is non-toxic and is naturally cleared from the body – lights up. It’s the most sensitive test for the mosquito-borne diseases yet devised.

Lire la suite
[Nano-Medecine] – Supersensitive nanomaterials for DNA diagnostics and targeted drug delivery 21 février 2020

In 1900, German physician Paul Ehrlich came up with the notion of a “magic bullet.” The basic idea is to inject a patient with smart particles capable of finding, recognizing, and treating a disease. Medicine has pursued the magic bullet ever since.

Lire la suite