26 novembre 2019

[Optic] – Insect-inspired motion sensing

Accueil / Actualités / [Optic] – Insect-inspired motion sensing
Flèche contenu
Insect-inspired motion sensing - Codex International

Gyroscopes sense rotational motions to provide directional guidance without relying on satellites, so they are immune to signal jamming and other cyber threats, making them ideal for aircraft and submarines.
Integrating the devices into smaller defense and consumer electronics has been challenged by fundamental obstacles.
At micro sizes, gyroscopes’ electrical components can produce noise that interferes with their operation.
To maintain performance at microscale, the team developed an all-mechanical device with no on-chip electrical components.
The coin-sized design, fabricated at the Center for Nanophase Materials Sciences, mimics halteres, the vibrating wing-like organs flying insects use to navigate.
« Our goal was to optimize cost and performance in the smallest design possible to expand the market for this technology, » said ORNL’s Nick Lavrik.

Découvrez aussi
[Thin Films] – Nano Thin Film Deposition – How Does it Work? 11 août 2019

There are many ways to a deposit a nanosized film, in what are termed ‘bottom-up’ deposition methods. Nanosized films can also be produced by top-down approaches—such as lithography or etching—where larger materials are broken down to create nanosized structures. However, there are limits to how thin top-down approaches can go, so bottom-up methods are required to realize extremely thin films.

Lire la suite
[Solar cells] – Solar cells using quantum dots 21 février 2020

The development of next generation solar power technology that has potential to be used as a flexible ‘skin’ over hard surfaces has moved a step closer, thanks to a significant breakthrough at The University of Queensland (Nature Energy, « Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation »).

Lire la suite