21 février 2020

[Nanotechnology] – MoS nanoparticles provide a cheaper way to obtain hydrogen

Accueil > ActualitĂ©s > [Nanotechnology] – MoS nanoparticles provide a cheaper way to obtain hydrogen
Flèche contenu
Hydrogen research - Codex international

One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air. A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule. It can be made, for example, from platinum, or from molybdenum. But these are quite expensive materials. Therefore, the output energy is expensive too.
A group of Russian scientists have invented a new approach to solving this problem and published the thesis on this topic in Nanomaterials (« Comparative Study of the Structure, Composition, and Electrocatalytic Performance of Hydrogen Evolution in MoSx~2+δ/Mo and MoSx~3+δ Films Obtained by Pulsed Laser Deposition »).
Director of the IKBFU “Functional nanomaterials” Science and Education Center, Alexander Goykhman said: “We propose molybdenum sulfide as a material for the catalysts which is, firstly, more effective than molybdenum, and, secondly, much cheaper since the total amount of expensive metal in catalysts is reduced, and the sulfur is not scarce and very cheap.”
According to Alexander Goykhman, the material was created in the Moscow National Nuclear Research University, and the IKBFU scientists were to study the sulfur and find out whether it has all necessary parameters or not.
Prof. Goykhman said: “Usually we grow the nanostructures and our colleagues in Moscow study them. But in this case, our roles are reversed. Nevertheless, the structures are fine and fully meet the expectations. We have managed to get the best suitable for catalyst process molybdenum sulfur.”
The scientists that have found the more effective material for catalysts production also offered the most efficient way of using it.
Alexander Goykhman continues: « To make an effective hydrogen engine one must pay attention not only to the constitution of the catalyst but also to the shape of it. We suggest using thin films of molybdenum sulfide deposited on the surface of glassy carbon. In this case, the material consumption will be minimal, and the surface area of the catalyst will be the same as if it was completely made from molybdenum sulfide. In the published work, a method for the deposition of such functional molybdenum sulfide films is proposed. It is also shown under what conditions of formation it is possible to achieve maximum catalyst efficiency. »
According to Alexander Goykhman, this research may give an impetus to the hydrogen-based energy sector.
Source: Immanuel Kant Baltic Federal University

DĂ©couvrir
[Graphene] – Large-scale synthesis of graphene and other 2D materials 7 septembre 2023

Since its first demonstration in 2004, the large-scale commercial production of graphene has proven difficult and costly (‘large scale’ usually defined as weights more than 200 mg or films larger than 200 cm2). For instance, at an estimated cost of $50 000 to $200 000 per ton for graphene powders and $45 000 to $100 000 per m2 of graphene film, industrial production methods and costs are restraining graphene utility.

Lire la suite
[Thin-Films] – Researchers still fail to print thin-film transistors with metal oxides onto heat-sensitive materials 29 septembre 2022

The bar was undoubtedly set high: In the research project Functional Oxides Printed on Polymers and Paper – FOXIP for short – the goal was to succeed in printing thin-film transistors on paper substrates or PET films. Electronic circuits with such elements play an important role in the growing Internet of Things (IoT), for example as sensors on documents, bottles, packaging … – a global market worth billions.

Lire la suite