17 novembre 2021

[Nanotechnology] – Engineering of Pd-single-atom coordinated biocatalysts for chem-/sono-/photo-trimodal tumor therapies.

Accueil > Actualités > [Nanotechnology] – Engineering of Pd-single-atom coordinated biocatalysts for chem-/sono-/photo-trimodal tumor therapies.
Flèche contenu
Nanotechnology - Codex International

The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge.

“At present, semiconductor materials (e.g., TiO2) and conjugated organic structure (e.g., porphyrin) are the main materials that can be utilized to integrate CDT, SDT, and PDT in one nanoplatform,” says Prof. Chong Cheng, a full professor and a low-dimensional nanomaterials specialist at the College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering in Sichuan University (China).

However, the CDT efficiency of TiO2-based semiconductor materials is relatively low. And many reported porphyrin-metal coordination structures based on the carboxyl groups don’t present a strong π-conjugated system, the π-d delocalization effect of electrons is low, the conductivity is not sufficient, and the chemical stability is also poor, which may eventually lead to low biocatalytic activity and insufficient energy conversion efficiency for SDT and PDT when compared with the metal-N coordination structure. What’s more, the currently synthesized porphyrin-based metal-N coordination structure usually exhibits bulk materials with a micrometer scale.

To overcome the difficulties on designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies, in a recent publication in Advanced Materials (« Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies »), for the first time, Prof. Li Qiu at West China Hospital of Sichuan University and Prof. Chong Cheng at College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering in Sichuan University, precisely designed a Pd single-atom coordinated polymers-based biocatalyst (Pd-Pta/Por) for achieving chem-/sono-/photo-trimodal dynamic tumor therapies.

The study verified that the Pd-Pta/Por biocatalyst consists of atomic Pd-N coordination active sites and owns efficient catalytic yield of reactive oxygen species for highly synergistic antitumor therapies, which takes an essential step toward developing ROS-related therapeutic and biological applications.

“We have found that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2-Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies.

The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1O2 by the porphyrin-based sono/photo-sensitizers to achieve combined sono-/photo-dynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation.

Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistically chem-/sono-/photo-trimodal antitumor efficacies,” says the Prof. Chong Cheng.

Découvrez aussi
[Nanotechnology] – Controlling buckling in a nanoscale beam using electrostatic effects 23 février 2020

A team of researchers from Bilkent University and Sabanci University SUNUM Nanotechnology Research Center has developed a way to control buckling in a nanoscale beam using electrostatic effects. In their paper published in the journal Physical Review Letters, the group describes the device they built and its possible uses.

Lire la suite
[3D Printing] – The First 3D-Printed Metal Aircraft Engine Component and What it Means for the Defense Industry 3 novembre 2020

Recent space projects such as NASA’s plan to create a permanent moon base and SpaceX’s method of reaching planet Mars has led to a new burst of technological innovation across the aerospace industry. Such developments are seen in the field of component manufacturing, where 3D printing has allowed for flexibility during the design process.

Lire la suite