21 août 2019

[Nanotechnologies] – Novel Graphene-Matrix-Assisted Stabilization Technique Using Unique 2D Materials

Accueil / Actualités / [Nanotechnologies] – Novel Graphene-Matrix-Assisted Stabilization Technique Using Unique 2D Materials
Flèche contenu
2D copper oxide material inside the 2 layer graphene matrix - Codex International

Researchers from Russia and Japan have discovered a way to stabilize two-dimensional (2D) copper oxide (CuO) materials using graphene. Apart from being the chief candidates for spintronics applications, these materials may be used in upcoming quantum computers.
Recently, the group of 2D materials was joined by a new class, the monolayers of oxides and carbides of transition metals, which have been the theme of wide-ranging theoretical and experimental research. These new materials are of significant interest to researchers because of their uncommon rectangular atomic structure and physical and chemical properties.
Researchers are specifically interested in a unique 2D rectangular copper oxide cell, which is not present in crystalline (3D) form, as opposed to several other 2D materials, whether familiar or discovered in recent times, which have a lattice akin to that of their crystalline (3D) equivalents. The key hindrance for real-world use of monolayers is their low stability.
A team of researchers from MISiS, the Institute of Biochemical Physics of RAS (IBCP), Skoltech, and the National Institute for Materials Science in Japan (NIMS) discovered 2D copper oxide materials with a rare crystal structure within a two-layer graphene matrix using experimental techniques.
Finding that a rectangular-lattice copper-oxide monolayer can be stable under given conditions is as important as showing how the binding of copper oxide and a graphene nanopore and formation of a common boundary can lead to the creation of a small, stable 2D copper oxide cluster with a rectangular lattice. In contrast to the monolayer, the small copper oxide cluster’s stability is driven to a large extent by the edge effects (boundaries) that lead to its distortion and, subsequently, destruction of the flat 2D structure.
Alexander Kvashnin, Senior Research Scientist, Skoltech
He added, “Moreover, we demonstrated that binding bilayered graphene with pure copper, which never exists in the form of a flat cluster, makes the 2D metal layer more stable.”
Copper oxide rectangular lattice’s preferability to form in a bigraphene nanopore was established by the calculations carried out using the USPEX evolutionary algorithm formulated by Professor at Skoltech and MIPT, Artem Oganov.
The analysis of the physical properties of the stable 2D materials specifies that they are ideal options for spintronics applications.

Découvrez aussi
[Thin Films] – Ion Beam Deposition – Applications and Advantages 11 août 2019

This paper presents a review of Ion Beam Technology. In this review the main applications and advantages of using Ion Beam technology for deposition processes when compared to technology such as plasma or evaporation (PVD) will be presented. To start with, an overview of how an ion beam is generated will be described. This will then be followed by a presentation and discussion of some advantageous applications of ion beam technology.

Lire la suite
[CVD] – Controlling the Orientation, Edge Geometry and Thickness of CVD Graphene 3 novembre 2020

Creating defect-free sheets of Graphene is said to be one of the main ‘hurdles’ in the search for wide scale commercialization of the material… but why is it so important to form large defect free sheets?
Graphene has received an astonishing amount of interest these past few years, so much so that now it is commonly referred to as the miracle material that’s predicted to revolutionize the 21st century.

Lire la suite