30 juillet 2021

[Energy-Storage] – Engineering 2D nanofluidic channels for energy storage application.

Accueil / Actualités / [Energy-Storage] – Engineering 2D nanofluidic channels for energy storage application.
Flèche contenu
energy storage - codex international

Despite being a promising electrode material, bulk cobalt oxide (Co3O4) exhibits poor lithium ion storage properties. Nanostructuring, e.g. making Co3O4 into ultrathin nanosheets, shows improved performance, however, Co3O4-based nanomaterials still lack long-term stability and high rate capability due to sluggish ion transport and structure degradation.

Nanofluidic channels possess desired properties to address above issues. However, while these unique structures have been studied in hollow nanotubes and recently in restacked layered materials such as graphene, it remains challenging to construct nanofluidic channels in intrinsically non-layered materials.

Motived by the large number of non-layered materials, e.g. transition metal oxides, which hold great promise in battery applications, scientists aim to extend the concept of nanofluidic channels into these materials and improve their electrochemical properties.

Nanofluidic channels feature a unique unipolar ionic transport when properly designed and constructed. By controlling surface charge and channel spacing, enhanced and selective ion transport can be achieved in these channels by constructing them with dimensions comparable to the double Debye length and opposite surface charge with respect to the transporting ion.

In a new study published in Advanced Materials, researchers have developed a Co3O4-based two-dimensional (2D) nano-architecture possessing nanofluidic channels with specially designed interlayer characteristics for fast lithium ion transport, leading to exceptional performance in lithium ion batteries ever reported for this material.

« Such constructed 2D nanofluidic channels in non-layered materials manifest a general structural engineering strategy for improving electrochemical properties in a vast number of different electrode materials, » Guihua Yu, a professor in Materials Science and Engineering, Mechanical Engineering, at the Texas Materials Institute, University of Texas at Austin. « The enhanced and selective ion transport demonstrated in our study is of broad interest to many applications where fast kinetics of ion transport is essential. »

Découvrez aussi
[Thin Films] – Splicing together a thin film in motion 18 décembre 2018

The electronic behavior of thin films is heavily influenced by the contact with their surroundings, as exemplified by the recent discovery of 2D superconductivity at a thin film interface. However, information about how such entwined states come into existence is limited by the lack of tools capable of visualizing such buried interfaces.

Lire la suite
[Nanotechnology] – Nanotechnology and the Future of the Beverage Industry 25 octobre 2020

The rapid increase in the world’s population has subsequently increased the demand for food supply. Farmers often lose their agricultural produce due to pathogenic infestations, poor soil conditions, water, and environmental factors. Scientists believe nanobiosensors can play a crucial role in revolutionizing the farming system by determining threats to prevent agricultural loss.

Lire la suite