16 février 2021

[Energy-Storage] – A lithium-air battery with long cycle life and low overpotentials

Accueil > ActualitĂ©s > [Energy-Storage] – A lithium-air battery with long cycle life and low overpotentials
FlĂšche contenu
Lithium Air Battery - Codex International

One of the bottlenecks in widespread implementation of sustainable energy technologies are highly efficient energy storage systems. Lithium-ion batteries (LIBs) are the prevailing solution for today’s electronic devices, from consumer gadgets to medical devices, electric vehicles, even satellites. The main reason for the domination of LIB technology in many application areas is that it has the highest electrical storage capacity with respect to its weight.
LIBs generally contain an energy capacity of 100–200 Wh/kg. This allows most electric cars to travel upwards of 300-400 kilometers on a single change. However, despite the high energy density of LIBs compared to other kinds of batteries, they are still around a hundred times less energy dense than gasoline (which contains 12700 Wh/kg by mass or 8760 Wh/L by volume). That means that gasoline-powered engines are gaining higher thermal efficiencies, allowing for fuel efficiencies upwards of 6-7 L/100km. On a 60-liter tank, this allows for more than 800-1000 km of range, easily doubling, or even tripling that of the average electric car.
Although LIBs are continuing to achieve higher energy densities, various research studies are indicating that max theoretical energy limits (estimated at 400-500 Wh/kg) are in sight.

DĂ©couvrir
[Digital] – Promising baby steps toward brain-inspired computing 16 fĂ©vrier 2021

As the world becomes increasingly digitalized, data centers and data transmission networks are emerging as an important source of energy demand, each accounting for about 1% of global electricity use. Global data center electricity demand in 2019 was ∌200 TWh, or around 0.8% of global final electricity demand.

Lire la suite
[Nanotechnology] – Cellulose nanomaterials could make renewable energy cheaper 21 fĂ©vrier 2020

A team led by Hongli (Julie) Zhu, an assistant professor of mechanical and industrial engineering at Northeastern, is using unique nanomaterials derived from cellulose to improve the large and expensive kind of batteries needed to store renewable energy harnessed from sources such as sunlight and the wind.

Lire la suite