12 November 2019

[Thin-Film] – Big improvements in thin-film solar cell efficiency now possible

Home / News / [Thin-Film] – Big improvements in thin-film solar cell efficiency now possible
Flèche contenu
CIGS Solar cell- Codex International

Researchers at Penn State and Delaware have developed a theoretical method to improve the efficiency of thin-film solar cells by up to 33 percent.
Flexible thin-film solar cells are needed to supply electrical power to fabrics, clothing, back packs and anywhere that a local autonomous power supply is required.
Rooftop solar based on silicon has made solar energy cheap and readily available. But silicon is rigid and heavy, suitable for large-scale power production but not for portable power. Currently, flexible solar commands around 5 percent of the solar cell market. In order to increase the use of flexible solar it is important to increase the conversion efficiency from its current level of around 21 percent. By tweaking a couple of layers in the solar cell, the researchers believe they can increase efficiency to 27.8 percent.
“Current CIGS cells have a homogenous semiconductor layer,” says Akhlesh Lakhtakia, Evan Pugh University Professor and Charles Godfrey Binder Endowed Professor of Engineering Science and Mechanics, Penn State. “We said, let us go with a nonhomogeneous layer designed to give us the maximum efficiency.”
By varying the semiconductor bandgap on a gradient, they were able to improve the capture of solar energy and increase efficiency by a third. A second tweak involves including a rough reflective layer which helps to slow the recombination of electrons and their holes, again improving efficiency.
In other work, the team has shown that they can increase the efficiency of another type of thin-film cell from 12 percent to 21 percent, an improvement of 80 percent.
“This tells us the opportunity for significant improvement exists,” he says.
Other opportunities have also arisen, including optimizing solar cells for interior lighting and for developing colored solar cells that can be incorporated into designs and clothing.

Discover Also
[Nanotechnology] – How do atoms vibrate in graphene nanostructures? 13 August 2019

In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons – the vibration of atoms in solids – influence the materials’ properties.

Read more
[Nanocatalyst] – New nanocatalyst recycles greenhouse gases into fuel and hydrogen gas 21 February 2020

Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals. The results could be revolutionary in the effort to reverse global warming, according to the researchers.

Read more