materiaux

Home > Target Ce 99.95%, Dia 3″x 2mm
Flèche contenu
Discover Also
[Perovskites] – Perfecting perovskites – new gas-quench method yields more stable solar cells 24 January 2024

The new method of making mixed halide-perovskites results in solar cells with improved stability and performance. The new method results in better control over perovskite crystallization rates. This means the crystal structure is more ordered, in part due to researchers understanding and taking advantage of the faster crystallization of bromide relative to iodide.
The result is a material with fewer defects and less halide migration and thus less segregation of the bromide and iodide. This in turn means uniform mixing of bromide and iodide across the material, which allows the material to absorb light evenly. The end result is that solar cells made using the new method will perform better under real-world conditions.
Typical halide perovskite solution deposition uses an anti-solvent drip procedure to initiate crystallization of the halide film. The standard anti-solvent method for producing bromide-iodide mixed halide perovskite films often leads to excessive defect formation (e.g., bromide vacancies) owing to the rapid crystallization of bromide vs. iodide-perovskite phases. Simulations show that halide migration is enhanced in the presence of a large population of halide vacancies. This limits the stability of bromide-iodide mixed halide perovskites under light and heat.
In comparison to the anti-solvent approach, the gentler gas-quench method better controls crystallization, first producing a bromide-rich surface layer that then induces top-down columnar growth to form a gradient structure with less bromide in the bulk than in the surface region. The anti-solvent method does not produce such a gradient structure.
In this study, researchers from the National Renewable Energy Laboratory, the University of Toledo, and the University of Colorado Boulder demonstrated that the gas-quench method also produces fewer bromide vacancies and results in materials with a higher quality opto-electronic performance. Solar cells made using the gas-quench method retain desirable light absorption properties and provide enhanced performance in the form of a higher charge carrier mobility, higher open circuit voltage, and enhanced stability.

Read more
[Nano-Technology] – Using chirality for faster, smaller, and more efficient data storage devices 28 October 2022

Researchers at Johannes Gutenberg University Mainz (JGU) are pursuing a completely new and unconventional strategy to improve the way data can be processed and – in particular – stored. Together with their partners at the Hebrew University of Jerusalem, they have been granted funding by the Carl Zeiss Foundation (CZS). The project of this interdisciplinary team is among a total of five projects – all at early stages and considered to be especially innovative – to be funded through the new CZS Wildcard program. The team members, based in Mainz and Jerusalem, have come up with the idea of bringing together two different forms of chirality to develop new data storage systems that are faster, smaller, and more efficient than those currently available.

Read more