20 August 2019

[Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research

Home / News / [Photonic] – Plasmonic-Photonic Crystals Studied to Further Sensor, Laser Research
Flèche contenu
PCCs - Codex International

As part of their research into optical states of plasmonic-photonic crystals (PPCs), scientists at Kazan Federal University investigated three-dimensional opal-like plasmonic-photonic crystals (OLPPCs), focusing on why OLPPCs do not admit light of certain wavelengths. (This is called the photonic bandgap — it is the range of light wavelengths where propagation through a crystal is difficult).
The primary conditions for passing a light beam with the wavelength of the photonic bandgap and a certain polarization through an OLPPC are the continuity of the gold layer, with a thickness of about 40 nm, and the use of polarized light, said the team.

The researchers modeled light transmission through photonic crystals with a continuous gold layer on their surfaces. They modeled different versions of PPCs and were able to define the conditions of existence of a polarization-sensitive photonic bandgap transmission peak in the OLPPC. They also studied the condition of efficient excitation of the hybrid plasmonic-photonic mode in such structures.

The researchers found that transmittance of light across a PPC was accompanied by excitations of the optical Tamm states. One-dimensional PPCs had light transmission pass bands inside the photonic bandgap in both polarizations, but 3D PPCs did not have light transmission pass bands inside the photonic bandgap, they said, because of a noncontinuous gold layer (shaped like separate nanocaps or nanocrescents on the surface of a PPC). The OLPPCs that were studied had a light transmission pass band inside the photonic bandgap with certain polarization, due to the excitation of the hybrid mode of the optical states.

Discover Also
[Nanotechnology] – Nanomaterials to boost the body’s natural defenses 12 November 2019

When a person gets sick, the invading virus or bacteria often triggers an immune response, sending a wave of white blood cells to attack the source of the illness. While the body’s natural defenses can often dismantle the infection, the immune reaction can sometimes cause more harm than intended.

Read more
[Nanotechnology] – Zinc oxide nanowires – novel solution for cheaper, cleaner production of electronic components 13 August 2019

Researchers are offering a novel solution for high-yield nanowire production from zinc oxide – a cheaper and environmentally friendlier material, compared to the rare earth elements such as indium, arsenic or gallium often used in electronics production.

Read more