9 November 2021

[Perovskite] – Impurities enhance the performance of perovskite solar cells.

Home > News > [Perovskite] – Impurities enhance the performance of perovskite solar cells.
Flèche contenu
perovskite - codex INternational

The development of perovskite solar cells, first reported in 2009, is a possible route towards high efficiency photovoltaics that are also cost-effectiveness, owing to to their easy-processing from solution. They absorb light across almost all visible wavelengths, they have exceptional power conversion efficiencies exceeding 20% in the lab, and they are relatively easy to fabricate. Question marks have however remained on their stability.

researchers in Germany have now demonstrated in detail how chemical purity of perovskite precursors can affect the morphology of thin-film perovskite layers.

While most studies concentrate on the exploration of processing conditions, the team has investigated the purity levels of common perovskite precursor solutions and found a number of impurities that are critically important toward controlling the crystallization of perovskites.

They observed that impurities that formed during the preparation of perovskite precursor solutions initiate formation of PbHPO3 nanoparticles, which helps to growth larger perovskite crystal grains resulting in higher solar cells efficiency.

“We have also demonstrated that the increased perovskite grain size, the reduced defect density, and the enhanced intrinsic perovskite stability of the thin films are achieved by using perovskite precursor solution that contains PbHPO3 nanoparticles,” Ievgen Levchuk, a PhD student in the group of Prof. Christoph J. Brabec (Materials for Electronics and Energy Technology – i-MEET) at Friedrich-Alexander-Universität Erlangen-Nürnberg, and first author of the paper together with co-author Yi Hou, a PhD student in the same group, tells Nanowerk. ” Our findings indicate that the understanding and ability to control the amount of impurities in perovskite precursor solution is important for the full control and reproducibility of perovskite solar cell fabrication.”

The study highlights the chemical investigation of the possible impurities formed during methylammonium iodide (CH3NH3I) preparation and reveal their relevance during perovskite solar cell processing.

The scientists found that the impurities are a side product during CH3NH3I synthesis in the presence of hypophosphorous acid (H2PO2) as a stabilizer for hydriodic acid, namely methylammonium hypophosphite (CH3NH3H2PO2) and methylammonium phosphite (CH3NH3H2PO3).

“These contaminators initiate PbHPO3 nanoparticle formation in the perovskite precursor solution, with further seed growth during thin-film formation resulting in increased perovskite grain size, a reduced defect density, and an enhanced intrinsic perovskite stability,” explains Levchuk.

He points out that, as a result of the presence of impurities and by using a simple planar inverted (p-i-n) structure, the performance of perovskite devices could considerably be enhanced from 12.2% to 17.2% at roll-to-roll compatible processing temperature conditions (<140 °C).

“Our findings indicate that the understanding and ability to control the amount of impurities in perovskite precursor solutions is extremely important for achieving full control and reproducibility of solar cell fabrication,” Levchuk concludes. “Therefore, quality control for self-synthesized or commercially available CH3NH3I is necessary.”

Discover Also
[Perovskite] – Printing strategies for scaling up perovskite solar cells. 15 November 2021

To reach the target of carbon neutrality, a transition from fossil energy to renewable energy generation is indispensable. Photovoltaic technology is considered as one of the most prominent sources of renewable energy.

Read more
[Thin Films] – Green Thin Film Technology 25 October 2020

Thin film technology – the application of materials ranging between several micrometers and a fraction of a nanometer in thickness – is increasingly becoming a major focus of scientific and technological approaches to tackling climate change. A number of green thin film technologies are in use today or are being developed, from successful experiments with thin film biofilters to the growing use of thin film battery technology, and now to the mainstream application of thin film photovoltaics.

Read more