26 November 2019

[Optic] – Insect-inspired motion sensing

Home / News / [Optic] – Insect-inspired motion sensing
Flèche contenu
Insect-inspired motion sensing - Codex International

Gyroscopes sense rotational motions to provide directional guidance without relying on satellites, so they are immune to signal jamming and other cyber threats, making them ideal for aircraft and submarines.
Integrating the devices into smaller defense and consumer electronics has been challenged by fundamental obstacles.
At micro sizes, gyroscopes’ electrical components can produce noise that interferes with their operation.
To maintain performance at microscale, the team developed an all-mechanical device with no on-chip electrical components.
The coin-sized design, fabricated at the Center for Nanophase Materials Sciences, mimics halteres, the vibrating wing-like organs flying insects use to navigate.
“Our goal was to optimize cost and performance in the smallest design possible to expand the market for this technology,” said ORNL’s Nick Lavrik.

Discover Also
[Semiconductor] – A nanoscale gold butterfly can make its own semiconductor skin 23 February 2020

Hokkaido University researchers have devised a unique approach for making nanosized semiconductors on a metal surface. The details of the method were reported in the journal Nano Letters (“Localized ZnO Growth on a Gold Nanoantenna by Plasmon-Assisted Hydrothermal Synthesis”) and could further research into the fabrication of nanosized light and energy emitters.

Read more
[2D Material] – No strain, no gain! breakthrough in 2D material that produces single photons 23 February 2020

Quantum information technologies need materials that can produce a regular stream of single particles of light (photons). Two-dimensional materials are made of single layers of coordinated atoms.
Recent research has shown that these 2D materials may have potential as light sources that emit light as single photons.

Read more