10 December 2021

[Nanotechnology] – Nanotechnology solution for radioactive waste cleanup.

Home > News > [Nanotechnology] – Nanotechnology solution for radioactive waste cleanup.
Flèche contenu
Nuclear nanotehcnology - Codex International

Radioactive material is toxic because it creates ions – by stripping away electrons from atoms – when it reacts with biological molecules. These ions can form free radicals, which damage proteins, membranes, and nucleic acids. Free radicals damage components of the cells’ membranes, proteins or genetic material by “oxidizing” them – the same chemical reaction that causes iron to rust. This is called “oxidative stress”. Many forms of cancer are thought to be the result of reactions between free radicals and DNA, resulting in mutations that can adversely affect the cell cycle and potentially lead to malignancy.

Nanotechnology has provided numerous constructs that reduce oxidative damage in engineering applications with great efficiency (see our Spotlight “Radical nanotechnology – how medicine can learn from materials science”). As a new research report shows, nanotechnology applications could also help to remediate radioactive contamination at the source, by removing radioactive ions from the environment.

Environmental contamination with radioactive ions that originate from the processing of uranium or the leakage of nuclear reactors is a potential serious health threat because it can leach into groundwater and contaminate drinking water supplies for large population areas. The key issue in developing technologies for the removal of radioactive ions from the environment – mainly from wastewater – and their subsequent safe disposal is to devise materials which are able to absorb radioactive ions irreversibly, selectively, efficiently, and in large quantities from contaminated water.

“Natural inorganic cation exchange materials, such as clays and zeolites, have been extensively studied and used in the removal of radioactive ions from water via ion exchange and are subsequently disposed of in a safe way” Dr. Huai Yong Zhu explains. “However, synthetic inorganic cation exchange materials – such as synthetic micas, g-zirconium phosphate, niobate molecular sieves, and titanate – have been found to be far superior to natural materials in terms of selectivity for the removal of radioactive cations from water. Radioactive cations are preferentially exchanged with sodium ions or protons in the synthetic material. More importantly, a structural collapse of the exchange materials occurs after the ion exchange proceeds to a certain extent, thereby forming a stable solid with the radioactive cations being permanently trapped inside. Hence, the immobilized radioactive cations can be disposed safely.”

Zhu, an Associate Professor in the School of Physical & Chemical Sciences at the Queensland University of Technology in Brisbane, Australia, points out that this phenomenon – that the uptake of large, radioactive cations eventually triggers the trapping of the cations – by itself represents a desirable property for any material to be used in decontamination of water from radioactive cations.

“Generally, ion exchange materials exhibiting a layered structure are less stable than those with 3D crystal structures and the collapse of the layers can take place under moderate conditions” says Zhu. “Then again, it has also been found that nanoparticles of inorganic solids readily react with other species or are quickly converted to other crystal phases under moderate conditions, and thus are substantially less stable than the corresponding bulk material.”

Based on this, Zhu and his colleagues from Queensland University of Technology and Dr. Xue Ping Gao from the Institute of New Energy Material Chemistry at Nankai University in Tianjin, PR China, focused their search for potential candidates for intelligent absorbents on nanoparticles of inorganic ion exchange materials with a layered structure.

“The novelty of our project is that the adsorption of bivalent toxic radioactive cations by the nanofibers finally induces structure collapse and deformation of the nanofibers, which permanently locks in the toxic radioactive cations,” Zhu explains. “The permanent entrapment prevents the radioactive cations to be released from the adsorbents and assures that they can be safely disposed. Furthermore, the titanate nanofiber can selectively remove the radioactive ions in the presence of plentiful competitive ions.”

It has been know for years that titanate solids possess a layered structure and exchangeable sodium ions. Also, titanate materials are stable to radiation, chemicals, and thermal as well as mechanical stress, so that they make an ideal carrier for radioactive ions.

Zhu points out that titanate nanofibers have a much larger capacity to take up the bivalent toxic radioactive cations, and they can do it much faster than other materials. “The most important finding by us is the nanofibers can trap the toxic radioactive cations permanently” he says.

 

Discover Also
[Thin Film] – Creating ‘movies’ of thin-film growth of buckyballs on graphene. 2 November 2021

From paint on a wall to tinted car windows, thin films make up a wide variety of materials found in ordinary life. But thin films are also used to build some of today’s most important technologies,…

Read more
[Nanotechnology] – Controlling buckling in a nanoscale beam using electrostatic effects 23 February 2020

A team of researchers from Bilkent University and Sabanci University SUNUM Nanotechnology Research Center has developed a way to control buckling in a nanoscale beam using electrostatic effects. In their paper published in the journal Physical Review Letters, the group describes the device they built and its possible uses.

Read more