23 February 2020

[Nanotechnology] – Controlling buckling in a nanoscale beam using electrostatic effects

Home / News / [Nanotechnology] – Controlling buckling in a nanoscale beam using electrostatic effects
Flèche contenu
Buckling under pressure - Codex International

A team of researchers from Bilkent University and Sabanci University SUNUM Nanotechnology Research Center has developed a way to control buckling in a nanoscale beam using electrostatic effects. In their paper published in the journal Physical Review Letters, the group describes the device they built and its possible uses.
In engineering terms, buckling is a deformation that occurs when pressure is applied to an object on two or more sides. The deformation typically occurs somewhere between the endpoints. In engineering applications, buckling usually means something has failed. But prior research has shown that buckling could be used to create devices such as nanoelectromechanical systems. In such systems, buckling could be used as a means of measuring acceleration or when building electromechanical relays. To build such devices, however, buckling must be both controllable and repeatable. In this new effort, the researchers have created a device that is capable of both.
The device the team built consisted of a silicon beam 40 micrometers long and 150 nanometers wide, which served as the buckling material. The beam was held in place by a ceiling and a floor. Pressure was applied to the ceiling by a comb drive, a type of actuator, which in turn applied downward pressure on the beam. Two comb-shaped structures were affixed to the ceiling—when voltage was applied, they were pulled closer together, resulting in increased pressure on the ceiling. The researchers also added electronic gates situated close to the beam on either side. As voltage was applied to the actuator above, electrostatic forces exerted pressure left or right. The result was a device that could force the tiny beam to buckle in a controlled fashion either right or left at up to 12 percent of the beam length.
The researchers suggest their device could be used as part of a very small mechanical pump—perhaps in medical applications. They plan to continue their work with the device by using it to test Landauer’s principle—and down the line, they plan to test its possible use as a means for storing information in two-state memory devices.

Discover Also
[Nano-Medecine] – Wearable medical sensors to get major sensitivity boost 22 February 2020

Biosensors integrated into smartphones, smart watches, and other gadgets are about to become a reality. In a paper featured on the cover of the January issue of Sensors (“Vertically Coupled Plasmonic Racetrack Ring Resonator for Biosensor Applications”), researchers from the Moscow Institute of Physics and Technology describe a way to increase the sensitivity of biological detectors to the point where they can be used in mobile and wearable devices. The study was supported by the Russian Science Foundation.

Read more
[Nanotechnology] – How do atoms vibrate in graphene nanostructures? 13 August 2019

In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons – the vibration of atoms in solids – influence the materials’ properties.

Read more