Noble metals such as platinum can make useful catalysts to accelerate chemical reactions, particularly hydrogenation (adding hydrogen atoms to a molecule). The research team led by Professor Bruce Gates at the UC Davis Department of Chemical Engineering is interested in making platinum catalysts that are highly efficient and stable during chemical reactions.
Previous work has shown that platinum arranged in clusters of a few atoms on a surface makes a better hydrogenation catalyst than either single platinum atoms, or larger nanoparticles of platinum. Unfortunately, such small clusters tend to clump easily into larger particles, losing efficiency.
Yizhen Chen, then a postdoctoral scholar in the Gates Catalysis Research Group, picked up on an idea by Jingyue Liu, now at Arizona State University, to “trap” platinum clusters on a tiny island of cerium oxide supported on a silica surface. Each island becomes its own chemical reactor.
Chen, Gates and colleagues were able to show that they could produce these clusters, that they showed good catalytic activity in hydrogenation of ethylene, and that they were stable under severe reaction conditions.
These confined metal clusters could provide a new route to produce stable catalysts for the chemical industry.
Nanoparticles, or tiny molecules that can deliver a payload of drug treatments and other agents, show great promise for treating cancers. Scientists can build them in various shapes with different materials, often as porous, crystal-like structures formed by a lattice of metal and organic compounds, or as capsules that enclose their contents inside a shell. When injected into a tumor, these particles can release treatments that attack cancer cells directly or complement other treatments like immunotherapy and radiation.
Lire la suiteReserchers have developed a way to print nanoparticles like ink, creating inexpensive sweat sensors that can continuously monitor multiple molecules.
Lire la suite