• FinTech
  • Forex Trading
  • Sober living

21 janvier 2025

[Nano-technology] – New chainmail-like 2D material could be the future of armor.

Accueil > Actualités > [Nano-technology] – New chainmail-like 2D material could be the future of armor.
Flèche contenu
New chainmail Codex international

In a remarkable feat of chemistry, a Northwestern University-led research team has developed the first two-dimensional (2D) mechanically interlocked material.
Resembling the interlocking links in chainmail, the nanoscale material exhibits exceptional flexibility and strength. With further work, it holds promise for use in high-performance, light-weight body armor and other uses that demand lightweight, flexible and tough materials.
Publishing in the journal Science (« Mechanically interlocked two-dimensional polymers »), the study marks several firsts for the field. Not only is it the first 2D mechanically interlocked polymer, but the novel material also contains 100 trillion mechanical bonds per 1 square centimeter — the highest density of mechanical bonds ever achieved. The researchers produced this material using a new, highly efficient and scalable polymerization process.
In a remarkable feat of chemistry, a Northwestern University-led research team has developed the first two-dimensional (2D) mechanically interlocked material.
Resembling the interlocking links in chainmail, the nanoscale material exhibits exceptional flexibility and strength. With further work, it holds promise for use in high-performance, light-weight body armor and other uses that demand lightweight, flexible and tough materials.
Publishing in the journal Science (« Mechanically interlocked two-dimensional polymers »), the study marks several firsts for the field. Not only is it the first 2D mechanically interlocked polymer, but the novel material also contains 100 trillion mechanical bonds per 1 square centimeter — the highest density of mechanical bonds ever achieved. The researchers produced this material using a new, highly efficient and scalable polymerization process.

Découvrir
[Graphene] – Large-scale synthesis of graphene and other 2D materials 7 septembre 2023

Since its first demonstration in 2004, the large-scale commercial production of graphene has proven difficult and costly (‘large scale’ usually defined as weights more than 200 mg or films larger than 200 cm2). For instance, at an estimated cost of $50 000 to $200 000 per ton for graphene powders and $45 000 to $100 000 per m2 of graphene film, industrial production methods and costs are restraining graphene utility.

Lire la suite
[Thin-Film Innovation] – Le Procédé de fabrication de cibles EPC© 22 juin 2021

Le nouveau procédé EPC © (Enhanced Process Control) de Codex International est une procédé de fabrication innovant qui améliore les performances et la durabilité des cibles ainsi que l’homogénéité des dépôts.

Lire la suite